- Time Complexity Of Search Algorithms
- Time Complexity Cheat Sheet
- Time Complexity Of Algorithms Cheat Sheet Printable
Sorting Algorithms | Space complexity | Time complexity | ||
---|---|---|---|---|
Worst case | Best case | Average case | Worst case | |
Insertion Sort | O(1) | O(n) | O(n2) | O(n2) |
Selection Sort | O(1) | O(n2) | O(n2) | O(n2) |
Smooth Sort | O(1) | O(n) | O(n log n) | O(n log n) |
Bubble Sort | O(1) | O(n) | O(n2) | O(n2) |
Shell Sort | O(1) | O(n) | O(n log n2) | O(n log n2) |
Mergesort | O(n) | O(n log n) | O(n log n) | O(n log n) |
Quicksort | O(log n) | O(n log n) | O(n log n) | O(n log n) |
Heapsort | O(1) | O(n log n) | O(n log n) | O(n log n) |
Data Structures | Average Case | Worst Case | ||||
---|---|---|---|---|---|---|
Search | Insert | Delete | Search | Insert | Delete | |
Array | O(n) | N/A | N/A | O(n) | N/A | N/A |
Sorted Array | O(log n) | O(n) | O(n) | O(log n) | O(n) | O(n) |
Linked List | O(n) | O(1) | O(1) | O(n) | O(1) | O(1) |
Doubly Linked List | O(n) | O(1) | O(1) | O(n) | O(1) | O(1) |
Stack | O(n) | O(1) | O(1) | O(n) | O(1) | O(1) |
Hash table | O(1) | O(1) | O(1) | O(n) | O(n) | O(n) |
Binary Search Tree | O(log n) | O(log n) | O(log n) | O(n) | O(n) | O(n) |
B-Tree | O(log n) | O(log n) | O(log n) | O(log n) | O(log n) | O(log n) |
Red-Black tree | O(log n) | O(log n) | O(log n) | O(log n) | O(log n) | O(log n) |
AVL Tree | O(log n) | O(log n) | O(log n) | O(log n) | O(log n) | O(log n) |
n f(n) | log n | n | n log n | n2 | 2n | n! |
---|---|---|---|---|---|---|
10 | 0.003ns | 0.01ns | 0.033ns | 0.1ns | 1ns | 3.65ms |
20 | 0.004ns | 0.02ns | 0.086ns | 0.4ns | 1ms | 77years |
30 | 0.005ns | 0.03ns | 0.147ns | 0.9ns | 1sec | 8.4x1015yrs |
40 | 0.005ns | 0.04ns | 0.213ns | 1.6ns | 18.3min | -- |
50 | 0.006ns | 0.05ns | 0.282ns | 2.5ns | 13days | -- |
100 | 0.07 | 0.1ns | 0.644ns | 0.10ns | 4x1013yrs | -- |
1,000 | 0.010ns | 1.00ns | 9.966ns | 1ms | -- | -- |
10,000 | 0.013ns | 10ns | 130ns | 100ms | -- | -- |
100,000 | 0.017ns | 0.10ms | 1.67ms | 10sec | -- | -- |
1'000,000 | 0.020ns | 1ms | 19.93ms | 16.7min | -- | -- |
10'000,000 | 0.023ns | 0.01sec | 0.23ms | 1.16days | -- | -- |
100'000,000 | 0.027ns | 0.10sec | 2.66sec | 115.7days | -- | -- |
1,000'000,000 | 0.030ns | 1sec | 29.90sec | 31.7 years | -- | -- |
Sorting algorithms are a fundamental part of computer science. Being able to sort through a large data set quickly and efficiently is a problem you will be likely to encounter on nearly a daily basis.
- Introduction Time Complexity. Instead of focusing on units of time, Big-O puts the number of steps in the spotlight. The hardware factor is taken out of the equation. Therefore we are not talking about run time, but about time complexity. ⚠ We will not cover the Space Complexity i.e. The how much memory an algorithm.
- Time complexity of an algorithm signifies the total time required by the program to run till its completion. The time complexity of algorithms is most commonly expressed using the big O notation. It's an asymptotic notation to represent the time complexity.
Here are the main sorting algorithms: Labelmark 5 software download.
Algorithm | Data Structure | Time Complexity - Best | Time Complexity - Average | Time Complexity - Worst | Worst Case Auxiliary Space Complexity |
---|---|---|---|---|---|
Quicksort | Array | O(n log(n)) | O(n log(n)) | O(n^2) | O(n) |
Merge Sort | Array | O(n log(n)) | O(n log(n)) | O(n log(n)) | O(n) |
Heapsort | Array | O(n log(n)) | O(n log(n)) | O(n log(n)) | O(1) |
Bubble Sort | Array | O(n) | O(n^2) | O(n^2) | O(1) |
Insertion Sort | Array | O(n) | O(n^2) | O(n^2) | O(1) |
Select Sort | Array | O(n^2) | O(n^2) | O(n^2) | O(1) |
Bucket Sort | Array | O(n+k) | O(n+k) | O(n^2) | O(nk) |
Radix Sort | Array | O(nk) | O(nk) | O(nk) | O(n+k) |
Time Complexity Of Search Algorithms
Another crucial skill to master in the field of computer science is how to search for an item in a collection of data quickly. Here are the most common searching algorithms, their corresponding data structures, and time complexities.
Big O Cheat Sheet 7 Time Complexity Classes on 1 Page Use this 1-page PDF cheat sheet as a reference to quickly look up the seven most important time complexity classes (with descriptions and examples). Video editing software with keygen. Download mt power drum kit full.
Here are the main searching algorithms:
Algorithm | Data Structure | Time Complexity - Average | Time Complexity - Worst | Space Complexity - Worst |
---|---|---|---|---|
Depth First Search | Graph of |V| vertices and |E| edges | - | O(|E|+|V|) | O(|V|) |
Breadth First Search | Graph of |V| vertices and |E| edges | - | O(|E|+|V|) | O(|V|) |
Binary Search | Sorted array of n elements | O(log(n)) | O(log(n)) | O(1) |
Brute Force | Array | O(n) | O(n) | O(1) |
Bellman-Ford | Graph of |V| vertices and |E| edges | O(|V||E|) | O(|V||E|) | O(|V|) |
Time Complexity Cheat Sheet
Graphs are an integral part of computer science. Mastering them is necessary to become an accomplished software developer. Here is the data structure analysis of graphs:
Node/Edge Management | Storage | Add Vertex | Add Edge | Remove Vertex | Remove Edge | Query |
---|---|---|---|---|---|---|
Adjacency List | O(|V|+|E|) | O(1) | O(1) | O(|V| + |E|) | O(|E|) | O(|V|) |
Incidence List | O(|V|+|E|) | O(1) | O(1) | O(|E|) | O(|E|) | O(|E|) |
Adjacency Matrix | O(|V|^2) | O(|V|^2) | O(1) | O(|V|^2) | O(1) | O(1) |
Incidence Matrix | O(|V| ⋅ |E|) | O(|V| ⋅ |E|) | O(|V| ⋅ |E|) | O(|V| ⋅ |E|) | O(|V| ⋅ |E|) | O(|E|) |
Storing information in a way that is quick to retrieve, add, and search on, is a very important technique to master. Here is what you need to know about heap data structures:
Time Complexity Of Algorithms Cheat Sheet Printable
Heaps | Heapify | Find Max | Extract Max | Increase Key | Insert | Delete | Merge |
---|---|---|---|---|---|---|---|
Sorted Linked List | - | O(1) | O(1) | O(n) | O(n) | O(1) | O(m+n) |
Unsorted Linked List | - | O(n) | O(n) | O(1) | O(1) | O(1) | O(1) |
Binary Heap | O(n) | O(1) | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(m+n) |
Binomial Heap | - | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) |
Fibonacci Heap | - | O(1) | O(log(n))* | O(1)* | O(1) | O(log(n))* | O(1) |