Time Complexity Of Algorithms Cheat Sheet



Sorting Algorithms
Sorting Algorithms Space complexityTime complexity
Worst caseBest caseAverage caseWorst case
Insertion SortO(1)O(n)O(n2) O(n2)
Selection SortO(1)O(n2) O(n2) O(n2)
Smooth SortO(1)O(n)O(n log n)O(n log n)
Bubble SortO(1)O(n)O(n2) O(n2)
Shell SortO(1)O(n)O(n log n2) O(n log n2)
MergesortO(n)O(n log n)O(n log n)O(n log n)
QuicksortO(log n)O(n log n)O(n log n)O(n log n)
HeapsortO(1)O(n log n)O(n log n)O(n log n)
Data Structures Comparison
Data Structures Average CaseWorst Case
SearchInsertDeleteSearchInsertDelete
ArrayO(n)N/AN/AO(n)N/AN/A
Sorted ArrayO(log n)O(n)O(n)O(log n)O(n)O(n)
Linked ListO(n)O(1)O(1)O(n)O(1)O(1)
Doubly Linked ListO(n)O(1)O(1)O(n)O(1)O(1)
StackO(n)O(1)O(1)O(n)O(1)O(1)
Hash tableO(1)O(1)O(1)O(n)O(n)O(n)
Binary Search TreeO(log n)O(log n)O(log n)O(n)O(n)O(n)
B-TreeO(log n)O(log n)O(log n)O(log n)O(log n)O(log n)
Red-Black treeO(log n)O(log n)O(log n)O(log n)O(log n)O(log n)
AVL TreeO(log n)O(log n)O(log n)O(log n)O(log n)O(log n)
Growth Rates
n f(n)log nnn log nn22nn!
100.003ns0.01ns0.033ns0.1ns1ns3.65ms
200.004ns0.02ns0.086ns0.4ns1ms77years
300.005ns0.03ns0.147ns0.9ns1sec8.4x1015yrs
400.005ns0.04ns0.213ns1.6ns18.3min--
500.006ns0.05ns0.282ns2.5ns13days--
1000.070.1ns0.644ns0.10ns4x1013yrs --
1,0000.010ns1.00ns9.966ns1ms----
10,0000.013ns10ns130ns100ms----
100,0000.017ns0.10ms1.67ms10sec----
1'000,0000.020ns1ms19.93ms16.7min----
10'000,0000.023ns0.01sec0.23ms1.16days----
100'000,0000.027ns0.10sec2.66sec115.7days----
1,000'000,0000.030ns1sec29.90sec31.7 years----

Sorting algorithms are a fundamental part of computer science. Being able to sort through a large data set quickly and efficiently is a problem you will be likely to encounter on nearly a daily basis.

  • Introduction Time Complexity. Instead of focusing on units of time, Big-O puts the number of steps in the spotlight. The hardware factor is taken out of the equation. Therefore we are not talking about run time, but about time complexity. ⚠ We will not cover the Space Complexity i.e. The how much memory an algorithm.
  • Time complexity of an algorithm signifies the total time required by the program to run till its completion. The time complexity of algorithms is most commonly expressed using the big O notation. It's an asymptotic notation to represent the time complexity.

Here are the main sorting algorithms: Labelmark 5 software download.

AlgorithmData StructureTime Complexity - BestTime Complexity - AverageTime Complexity - WorstWorst Case Auxiliary Space Complexity
QuicksortArrayO(n log(n))O(n log(n))O(n^2)O(n)
Merge SortArrayO(n log(n))O(n log(n))O(n log(n))O(n)
HeapsortArrayO(n log(n))O(n log(n))O(n log(n))O(1)
Bubble SortArrayO(n)O(n^2)O(n^2)O(1)
Insertion SortArrayO(n)O(n^2)O(n^2)O(1)
Select SortArrayO(n^2)O(n^2)O(n^2)O(1)
Bucket SortArrayO(n+k)O(n+k)O(n^2)O(nk)
Radix SortArrayO(nk)O(nk)O(nk)O(n+k)

Time Complexity Of Search Algorithms

Another crucial skill to master in the field of computer science is how to search for an item in a collection of data quickly. Here are the most common searching algorithms, their corresponding data structures, and time complexities.

Time Complexity Of Algorithms Cheat Sheet

Big O Cheat Sheet 7 Time Complexity Classes on 1 Page Use this 1-page PDF cheat sheet as a reference to quickly look up the seven most important time complexity classes (with descriptions and examples). Video editing software with keygen. Download mt power drum kit full.

Here are the main searching algorithms:

AlgorithmData StructureTime Complexity - AverageTime Complexity - WorstSpace Complexity - Worst
Depth First SearchGraph of |V| vertices and |E| edges-O(|E|+|V|)O(|V|)
Breadth First SearchGraph of |V| vertices and |E| edges-O(|E|+|V|)O(|V|)
Binary SearchSorted array of n elementsO(log(n))O(log(n))O(1)
Brute ForceArrayO(n)O(n)O(1)
Bellman-FordGraph of |V| vertices and |E| edgesO(|V||E|)O(|V||E|)O(|V|)

Time Complexity Cheat Sheet

Complexity

Graphs are an integral part of computer science. Mastering them is necessary to become an accomplished software developer. Here is the data structure analysis of graphs:

Node/Edge ManagementStorageAdd VertexAdd EdgeRemove VertexRemove EdgeQuery
Adjacency ListO(|V|+|E|)O(1)O(1)O(|V| + |E|)O(|E|)O(|V|)
Incidence ListO(|V|+|E|)O(1)O(1)O(|E|)O(|E|)O(|E|)
Adjacency MatrixO(|V|^2)O(|V|^2)O(1)O(|V|^2)O(1)O(1)
Incidence MatrixO(|V| ⋅ |E|)O(|V| ⋅ |E|)O(|V| ⋅ |E|)O(|V| ⋅ |E|)O(|V| ⋅ |E|)O(|E|)

Storing information in a way that is quick to retrieve, add, and search on, is a very important technique to master. Here is what you need to know about heap data structures:

Time Complexity Of Algorithms Cheat Sheet Printable

HeapsHeapifyFind MaxExtract MaxIncrease KeyInsertDeleteMerge
Sorted Linked List-O(1)O(1)O(n)O(n)O(1)O(m+n)
Unsorted Linked List-O(n)O(n)O(1)O(1)O(1)O(1)
Binary HeapO(n)O(1)O(log(n))O(log(n))O(log(n))O(log(n))O(m+n)
Binomial Heap-O(log(n))O(log(n))O(log(n))O(log(n))O(log(n))O(log(n))
Fibonacci Heap-O(1)O(log(n))*O(1)*O(1)O(log(n))*O(1)